skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Ze-Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/ optoelectronic properties of antimony trisulfide (Sb2S3) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of Sb2S3. In this work, we explore how encapsulation in single or multi-walled carbon nanotubes (SWCNTs or MWCNTs) and visible-range transparent boron nitride nanotubes (BNNTs) influences the growth and phase of Sb2S3 nanostructures. We demonstrate that nanotubes with smaller diameters had a more pronounced effect in the crystallographic growth direction and orientation of Sb2S3 nanostructures, promoting the crystallization of the guest structures along the long-axis [010]-direction. As such, we were able to reliably access wellordered few to single covalent chains of Sb2S3 when synthesized within defect-free SWCNTs with sub2 nm inner diameters. Intriguingly, we found that the degree of crystalline order of Sb2S3 nanostructures was strongly influenced by the presence of defects and discontinuities along the Sb2S3-nanotube interface. We show that amorphous nanowire domains of Sb2S3 form around defect sites in larger, multi-walled nanotubes that manifest inner wall defects and discontinuities, suggesting a means to manipulate the crystallization dynamics of confined sub-10 nm-thick Sb2S3 nanostructures within nanotubes. Lastly, we show that ultranarrow amorphous Sb2S3 can impart functionality onto isolable BNNTs with photocurrent generation in the pA range which, alongside the dispersibility of the Sb2S3@BNNTs, could be leveraged to easily fabricate photoresistors only a few nm in width. Altogether, our results serve to solidify the understanding of how q-1D vdW pnictogen chalcogenides crystallize within confined synthetic platforms and are a step towards realizing functional materials from ensembles of encapsulated heterostructures 
    more » « less
  2. Abstract The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent‐generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface‐templated approach, photoconductive substrates with symmetric peptide‐quaterthiophene (4T)‐peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T‐based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T‐peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned ‐RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification‐free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components. 
    more » « less
  3. Abstract Multi‐scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems—whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state‐of‐the‐art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi‐scale organization of electroactive organic materials, including biomolecule‐based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic‐abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems. 
    more » « less
  4. Abstract Peptides naturally have stimuli‐adaptive structural conformations that are advantageous for endowing synthetic materials with dynamic functionalities. Here, we report a carbodiimide‐based approach, combined with electrostatic modulation, to instruct π‐conjugated peptides to self‐assemble and be responsive to thermal disassembly cues upon consumption of the assembly trigger. Quaterthiophene‐functionalized peptides are utilized as a model system herein to study the formation of nanostructures at non‐equilibrium states. Peptides were designed to have aspartic acid at the termini to allow intramolecular anhydride formation upon adding carbodiimide, which consequentially reduces the electrostatic repulsion and facilitates assembly. We show that the carbodiimide‐fueled assembly and subsequent thermally assisted disassembly can be modulated by the net charge of the peptidic monomers, suggesting an assembly mechanism that can be encoded by sequence design. This carbodiimide‐based approach for the assembly of designer π‐conjugated systems offers a unique opportunity to develop bioelectronic supramolecular materials with controllable formation of dynamic and stimuli‐responsive structures. 
    more » « less
  5. Abstract Solution‐processable highly conductive polymers are of great interest in emerging electronic applications. For p‐doped polymers, conductivities as high a nearly 105S cm−1have been reported. In the case of n‐doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge‐carrier mobilities determined could be realized in combination with high charge‐carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n‐doped polymers that achieve a high conductivity of more than 90 S cm−1by a simple solution‐based co‐deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n‐dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n‐doped polymers, resulting in excellent electrical conductivity and thermoelectric performance. 
    more » « less